+1 (970) 414-2609
  • About Us
  • Business
  • Contact Us
  • Global News
Sunday, May 22, 2022
  • Home
  • Academy
  • Active Campaign
  • Youth Programs
  • Social Impact
No Result
View All Result
Boys & Girls Clubs of Senegal
No Result
View All Result
Home Robotics

Video Friday: No Time to Dance

by evan ackerman
May 6, 2022
in Robotics
Reading Time: 8 mins read
A A
464
SHARES
1.8k
VIEWS
Share on FacebookShare on Twitter

One of us (Levi) works with semiconductors and the other (Aeppli) with X-rays. So, after pondering this problem, we considered using X-rays to nondestructively image chips. You’d need to go beyond the resolution used in medical X-ray scanners. But it was clear to us that the needed resolution was possible. At that moment, what we’ve been calling the “chip scan” project was born.

Our first technique, ptychographic X-ray computed tomography, was tested first on a portion of a 22-nanometer Intel processor constructing a detailed 3D image of the chip’s interconnects.SLS-USC Chip-Scan team

Several years later, we’ve made it possible to map the entire interconnect structure of even the most advanced and complex processors without destroying them. Right now, that process takes more than a day, but improvements over the next few years should enable the mapping of entire chips within hours.

This technique—called ptychographic X-ray laminography—requires access to some of the world’s most powerful X-ray light sources. But most of these facilities are, conveniently, located close to where much of the advanced chip design happens. So as access to this technique expands, no flaw, failure, or fiendish trick will be able to hide.

After deciding to pursue this approach, our first order of business was to establish what state-of-the-art X-ray techniques could do. That was done at the Paul Scherrer Institute (PSI) in Switzerland, where one of us (Aeppli) works. PSI is home to the Swiss Light Source (SLS) synchrotron, one of the 15 brightest sources of coherent X-rays built so far.

Coherent X-rays differ from what’s used in a medical or dental office in the same way that the highly collimated beam of light from a laser pointer differs from light emitted in all directions from an incandescent bulb. The SLS and similar facilities generate highly coherent beams of X-ray photons by first accelerating electrons almost to the speed of light. Then, magnetic fields deflect those electrons, inducing the production of the desired X-rays.

To see what we could do with the SLS, our multidisciplinary team bought an Intel Pentium G3260 processor from a local store for about US $50 and removed the packaging to expose the silicon. (This CPU was manufactured using 22-nanometer CMOS FinFET technology).

A fly-though of the top layers of an Intel 22-nanometer processor reconstructed from X-ray scans.SLS-USC Chip-Scan Team

Like all such chips, the G3260’s transistors are made of silicon, but it’s the arrangement of metal interconnects that link them up to form circuits. In a modern processor, interconnects are built in more than 15 layers, which from above look like a map of a city’s street grid. The lower layers, closer to the silicon, have incredibly fine features, spaced just nanometers apart in today’s most advanced chips. As you ascend the interconnect layers, the features become sparser and bigger, until you reach the top, where electrical contact pads connect the chip to its package.

We began our examination by cutting out a 10-micrometer-wide cylinder from the G3260. We had to take this destructive step because it greatly simplified things. Ten micrometers is less than half the penetration depth of the SLS’s photons, so with something this small we’d be able to detect enough photons passing through the pillar to determine what was inside.

We placed the sample on a mechanical stage to rotate it about its cylindrical axis and then fired a coherent beam of X-rays through the side. As the sample rotated, we illuminated it with a pattern of overlapping 2-µm-wide spots.

At each illuminated spot, the coherent X-rays diffracted as they passed through the chip’s tortuous tower of copper interconnects, projecting a pattern onto a detector, which was stored for subsequent processing. The recorded projections contained enough information about the material through which the X-rays traveled to determine the structure in three dimensions. This approach is called ptychographic X-ray computed tomography (PXCT). Ptychography is the computational process of producing an image of something from the interference pattern of light through it.

The underlying principle behind PXCT is relatively simple, resembling the diffraction of light through slits. You might recall from your introductory physics class that if you shine a coherent beam of light through a slit onto a distant plane, the experiment produces what’s called a Fraunhofer diffraction pattern. This is a pattern of light and dark bands, or fringes, spaced proportionally to the ratio of the light’s wavelength divided by the width of the slit.

If, instead of shining light through a slit, you shine it on a pair of closely spaced objects, ones so small that they are effectively points, you will get a different pattern. It doesn’t matter where in the beam the objects are. As long as they stay the same distance from each other, you can move them around and you’d get the same pattern.

By themselves, neither of these phenomena will let you reconstruct the tangle of interconnects in a microchip. But if you combine them, you’ll start to see how it could work. Put the pair of objects within the slit. The resulting interference pattern is derived from the diffraction due to a combination of slit and object, revealing information about the width of the slit, the distance between the objects, and the relative position of the objects and the slit. If you move the two points slightly, the interference pattern shifts. And it’s that shift that allows you to calculate exactly where the objects are within the slit.

Any real sample can be treated as a set of pointlike objects, which give rise to complex X-ray scattering patterns. Such patterns can be used to infer how those pointlike objects are arranged in two dimensions. And the principle can be used to map things out in three dimensions by rotating the sample within the beam, a process called tomographic reconstruction.

You need to make sure you’re set up to collect enough data to map the structure at the required resolution. Resolution is determined by the X-ray wavelength, the size of the detector, and a few other parameters. For our initial measurements with the SLS, which used 0.21-nm-wavelength X-rays, the detector had to be placed about 7 meters from the sample to reach our target resolution of 13 nm.

In March 2017, we demonstrated the use of PXCT for nondestructive imaging of integrated circuits by publishing some very pretty 3D images of copper interconnects in the Intel Pentium G3260 processor. Those images reveal the three-dimensional character and complexity of electrical interconnects in this CMOS integrated circuit. But they also captured interesting details such as the imperfections in the metal connections between the layers and the roughness between the copper and the silica dielectric around it.

From this proof-of-principle demonstration alone, it was clear that the technique had potential in failure analysis, design validation, and quality control. So we used PXCT to probe similarly sized cylinders cut from chips built with other companies’ technologies. The details in the resulting 3D reconstructions were like fingerprints that were unique to the ICs and also revealed much about the manufacturing processes used to fabricate the chips.

We were encouraged by our early success. But we knew we could do better, by building a new type of X-ray microscope and coming up with more effective ways to improve image reconstruction using chip design and manufacturing information. We called the new technique PyXL, shorthand for ptychographic X-ray laminography.

The first thing to deal with was how to scan a whole 10-millimeter-wide chip when we had an X-ray penetration depth of only around 30 µm. We solved this problem by first tilting the chip at an angle relative to the beam. Next, we rotated the sample about the axis perpendicular to the plane of the chip. At the same time we also moved it sideways, raster fashion. This allowed us to scan all parts of the chip with the beam.

At each moment in this process, the X-rays passing through the chip are scattered by the materials inside the IC, creating a diffraction pattern. As with PXCT, diffraction patterns from overlapping illumination spots contain redundant information about what the X-rays have passed through. Imaging algorithms then infer a structure that is the most consistent with all measured diffraction patterns. From these we can reconstruct the interior of the whole chip in 3D.

Needless to say, there is plenty to worry about when developing a new kind of microscope. It must have a stable mechanical design, including precise motion stages and position measurement. And it must record in detail how the beam illuminates each spot on the chip and the ensuing diffraction patterns. Finding practical solutions to these and other issues required the efforts of a team of 14 engineers and physicists. The geometry of PyXL also required developing new algorithms to interpret the data collected. It was hard work, but by late 2018 we had successfully probed 16-nm ICs, publishing the results in October 2019.

Today’s cutting-edge processors can have interconnects as little as 30 nm apart, and our technique can, at least in principle, produce images of structures smaller than 2 nm.

In these experiments, we were able to use PyXL to peel away each layer of interconnects virtually to reveal the circuits they form. As an early test, we inserted a small flaw into the design file for the interconnect layer closest to the silicon. When we compared this version of the layer with the PyXL reconstruction of the chip, the flaw was immediately obvious.

In principle, a few days of work is all we’d need to use PyXL to obtain meaningful information about the integrity of an IC manufactured in even the most advanced facilities. Today’s cutting-edge processors can have interconnects just tens of nanometers apart, and our technique can, at least in principle, produce images of structures smaller than 2 nm.

The new version of our X-ray technique, called ptychographic X-ray laminography, can uncover the interconnect structure of entire chips without damaging them, even down to the smallest structures [top]. Using that technique, we could easily discover a (deliberate) discrepancy between the design file and what was manufactured [bottom].

But increased resolution does take longer. Although the hardware we’ve built has the capacity to completely scan an area up to 1.2 by 1.2 centimeters at the highest resolution, doing so would be impractical. Zooming in on an area of interest would be a better use of time. In our initial experiments, a low-resolution (500-nm) scan over a square portion of a chip that was 0.3 mm on a side took 30 hours to acquire. A high-resolution (19-nm) scan of a much smaller portion of the chip, just 40 μm wide, took 60 hours.

ADVERTISEMENT

The imaging rate is fundamentally limited by the X-ray flux available to us at SLS. But other facilities boast higher X-ray fluxes, and methods are in the works to boost X-ray source “brilliance”—a combination of the number of photons produced, the beam’s area, and how quickly it spreads. For example, the MAX IV Laboratory in Lund, Sweden, pioneered a way to boost its brilliance by two orders of magnitude. A further one or two orders of magnitude can be obtained by means of new X-ray optics. Combining these improvements should one day increase total flux by a factor of 10,000.

With this higher flux, we should be able to achieve a resolution of 2 nm in less time than it now takes to obtain 19-nm resolution. Our system could also survey a one-square-centimeter integrated circuit—about the size of an Apple M1 processor—at 250-nm resolution in fewer than 30 hours.

And there are other ways of boosting imaging speed and resolution, such as better stabilizing the probe beam and improving our algorithms to account for the design rules of ICs and the deformation that can result from too much X-ray exposure.

Although we can already tell a lot about an IC from just the layout of its interconnects, with further improvements we should be able to discover everything about it, including the materials it’s made of. For the 16-nm-technology node, that includes copper, aluminum, tungsten, and compounds called silicides. We might even be able to make local measurements of strain in the silicon lattice, which arises from the multilayer manufacturing processes needed to make cutting-edge devices.

Identifying materials could become particularly important, now that copper-interconnect technology is approaching its limits. In contemporary CMOS circuits, copper interconnects are susceptible to electromigration, where current can kick copper atoms out of alignment and cause voids in the structure. To counter this, the interconnects are sheathed in a barrier material. But these sheaths can be so thick that they leave little room for the copper, making the interconnects too resistive. So alternative materials, such as cobalt and ruthenium, are being explored. Because the interconnects in question are so fine, we’ll need to reach sub-10-nm resolution to distinguish them.

There’s reason to think we’ll get there. Applying PXCT and PyXL to the “connectome” of both hardware and wetware (brains) is one of the key arguments researchers around the world have made to support the construction of new and upgraded X-ray sources. In the meantime, work continues in our laboratories in California and Switzerland to develop better hardware and software. So someday soon, if you’re suspicious of your new CPU or curious about a competitor’s, you could make a fly-through tour through its inner workings to make sure everything is really in its proper place.

The SLS-USC Chip-Scan Team includes Mirko Holler, Michal Odstrcil, Manuel Guizar-Sicairos, Maxime Lebugle, Elisabeth Müller, Simone Finizio, Gemma Tinti, Christian David, Joshua Zusman, Walter Unglaub, Oliver Bunk, Jörg Raabe, A. F. J. Levi, and Gabriel Aeppli.

This article appears in the May 2022 print issue as “The Naked Chip.”

news image

Love0 Share Tweet Share
Previous Post

Self-propelled, endlessly programmable artificial cilia

Next Post

Shanghai adds 342 companies to second whitelist of firms allowed to resume production

Related Posts

Video Friday: Drone in a Cage

by evan ackerman
May 21, 2022

The ability to make decisions autonomously is not just what makes robots useful, it's what makes robots robots. We value...

Read more

Koreans Think AI Is the Future

by blythe mayoral
May 19, 2022

Artificial intelligence tops the list of technologies Koreans believe will change the future of the country. The Korea Intellectual Property...

Read more

Although the data is thin, advocates say robotics and AI will soon revolutionize agriculture

by tom johnson
May 17, 2022

This story was originally published by Undark and is reproduced here as part of the Climate Desk collaboration. Across Midwestern farms,...

Read more

Edmonton startup develops app to help with navigating construction barriers

by anna junker
May 16, 2022

Arne Andres is director of Click & Push Accessibility Inc., a company which has developed an advanced mobile app called...

Read more

Uber Eats is launching two autonomous delivery pilots in Los Angeles

by steve dent
May 16, 2022

Uber Eats is launching not just one but two autonomous delivery pilots today in Los Angeles, TechCrunch has reported. The...

Read more

Farming Drives Toward ‘Precision Agriculture’ Technologies

by tom johnson
May 14, 2022

This story originally appeared on Undark and is part of the Climate Desk collaboration. Across Midwestern farms, if Girish Chowdhary...

Read more
Next Post

Shanghai adds 342 companies to second whitelist of firms allowed to resume production

ADVERTISEMENT

Trending Posts

World News

Ukraine Praises Guerrilla Fighters to Aid Destroying Russian Artillery

by margaret weaver
May 22, 2022

The Zaporizhzhia Military Administration celebrated the destruction of Russian artillery systems and commended guerrillas and Ukrainian fighters for their actions...

Read more

Ukraine Praises Guerrilla Fighters to Aid Destroying Russian Artillery

Ukraine Won’t End the War Against Russia on the Battlefield: Zelensky

Oliver Stone Says Putin Had Cancer in Years He Shadowed Him for Project

Russia Cuts Gas Supplies To Neighboring Finland

‘Quad’ tackles China, Ukraine in Tokyo meet

Man City manager Guardiola wants midfielder to stay despite rumours of exit

Load More

Popular Posts

COVID-19 In Senegal

by BGC Senegal
March 23, 2020

An online learning platform to support Senegal in these moments of self-confinement and social distancing...

Senegal protests: Boys & Girls Clubs of Senegal Calls for Calm

by BGC Senegal
March 5, 2021

Dr. Francois Diouf, Vice President of Boys & ...

I am a “Talibé” In Senegal

by BGC Senegal
February 28, 2020

According to Human Rights Watch, more than 100,000 children in Senegal are forced to beg on the streets for food...

Facebook Twitter LinkedIn Youtube

NEWSLETTER

Subscribe to our newsletter and be the first to know about our upcoming events and programs.

QUICK LINKS

  • About Us
  • Learning Center
  • Active Campaign
  • Privacy Policy
  • Terms and Conditions
  • Contact us
  • Global News

CONTACT INFO

  • [email protected]
  • For donations contact us at: [email protected]

© 2019-2022 Boys & Girls Clubs of Senegal. We are a 501 (C)(3) organization and donations are tax deductible. - EIN: 83-3699796

No Result
View All Result
  • Home
  • Academy
  • Active Campaign
  • Youth Programs
  • Social Impact

© 2019-2022 Boys & Girls Clubs of Senegal. We are a 501 (C)(3) organization and donations are tax deductible. - EIN: 83-3699796

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT